close

標題:

Matrix problem

此文章來自奇摩知識+如有不便請留言告知

發問:

A= -2 2 3 -2 3 2 -4 2 5 (a) Find an invertible matrix P and a diagonal matrix D such that D = (P^?1)AP. (b) Compute A^5. 更新: A should be 3 -1 0 -1 2 -1 0 -1 3

最佳解答:

Using |A-λI|=0 and we find that λ=1,3,4 when λ=1, the eigenvector is (1,2,1) when λ=3, the eigenvector is (1,0,-1) when λ=4, the eigenvector is (1,-1,1) So D is 1 0 0 0 3 0 0 0 4 P is 1 1 1 2 0 -1 1 -1 1 (b) A^5=[PDP^(-1)]^5=PD^5P^(-1) the result is 463.000 -341.000 220.000 -341.000 342.000 -341.000 220.000 -341.000 463.000

其他解答:7638E748CCC65837

arrow
arrow
    創作者介紹
    創作者 omckyyo 的頭像
    omckyyo

    omckyyo的部落格

    omckyyo 發表在 痞客邦 留言(0) 人氣()