標題:
~Arithmetic sequence~
發問:
In an as,the sum of three consecutive terms is 24 and the product of these terms is 312. Find two possible sets of values for these terms.
最佳解答:
- 問路 (有關學校地址)
- 餵飼份量表點睇ga--
- 如何計這題數
- Audi A5 特點-
- 點樣由會展去糖街--
- 正負數的應用題!!(中一)急!!!!
- 死神 210-312中文名稱_9@1@@1@@1@
- [白痴問題]精液會唔會用晒
- 聖誕自助餐好介紹-
- 小六數學 常犯錯500學生
此文章來自奇摩知識+如有不便請留言告知
let a be the first term, d be the common difference first term = a second term = a+d third term = a+2d a+(a+d)+(a+2d)=24 3a+3d=24 3(a+d)=24 a+d=8 a=8-d -----(1) a(a+d)(a+2d)=312 (8-d)[(8-d)+d][(8-d)+2d]=312 (8-d)(8)(8+d)=312 8(64-d^2)=312 512-8d^2=312 200-8d^2=0 8d^2=200 d^2=25 d= 5 or -5 a= 3 or 13 respectively first set: 3, 8, 13 second set: 13, 8, 5 first set: 2007-11-12 15:01:33 補充: second set: 13, 8, 3
其他解答:
Let the 3 consecutive terms be a-d, a and a+d where a is a constant and d is the common difference. Then, (a-d) + a + (a+d) = 24 or 3a = 24 => a = 8 -----------(1) and (a-d)a(a+d) = 312 => a(a^2-d^2) = 312 => 8(8^2 - d^2) = 312 => d^2 = 25 => d = 5 or -5 Therefore the possible terms can be (3, 8, 13) or (13, 8, 3)7638E748EED250B0
留言列表