close
標題:

F3 Mensuration. be quick

發問:

1(a). A metallic right cylinder with both base radius and height of 10cm is melted, 1/3 of the metal is recast to form a right circular cone with the base same as orginal cylinder. Find the height of the cone. ans.10(b) The remaining metal is recast to form another right circular cone with the base same as the... 顯示更多 1(a). A metallic right cylinder with both base radius and height of 10cm is melted, 1/3 of the metal is recast to form a right circular cone with the base same as orginal cylinder. Find the height of the cone. ans.10 (b) The remaining metal is recast to form another right circular cone with the base same as the orginal cylinder. Find the total surface arear of this cone. ans.1020

最佳解答:

1a.) Let h be the heigh [ 兀(10)^2 X10 ] X 1/3 = 1/3兀(10)^2 X h 333+1/3 兀 = 33+1/3 (兀)(h) 10= h 1b.)Let h be the heigh [ 兀(10)^2 X10 ] X 2/3 = 1/3兀(10)^2 X h 666+2/3 兀 = 33+1/3 兀(h) 20= h Let l be the length: 10^2 + 20^2 = l^2 開方500 = l total surface area of the cone = 兀(10)(開方500) + 兀(10)^2 = 1016.40738(cor to 3 sig = 1020)

其他解答:

a) The volume of the right cylinder=[pi(10)^2]*10=1000pi cm^3 The volume of the right circular cone=(1000pi/3) cm^3 (1/3)pi(base radius)^2*(heigth)=1000pi/3 (1/3)pi(10)^2*(heigth)=1000pi/3 heigth=10cm b) The volume of the remaining metal=(2/3)*1000pi=2000pi/3 cm^3 (1/3)pi(10)^2*(height)=2000pi/3 height=20cm Total surface area =pi*10*(sq root(10^2+20^2))+pi*(10)^2 =(100sqrt5+100)pi =1020cm^2 (correct to the 3 sig. fig.) 2010-06-29 00:07:32 補充: Remark: The side area of a right circular cone=pi*r*l, where l is the slant height of the cone. 2010-06-29 13:34:47 補充: #1 l2=r2+h2 #2 pi=π

此文章來自奇摩知識+如有不便請留言告知

FAD2A23AB937987B
arrow
arrow
    創作者介紹
    創作者 omckyyo 的頭像
    omckyyo

    omckyyo的部落格

    omckyyo 發表在 痞客邦 留言(0) 人氣()