標題:
- 20點:今年有多少間直資中學?
- 痘痘做臉清除這樣好嘛-
- 蜜臘脫毛係點脫嫁---
- 我想問銅鑼灣有邊幾間酒吧任飲至底-
- 點去銀城---
- 客廳舖地磚
- 多碳水化合物,少蛋白質可唔可以增重架-
- 三道英文數(緊急)!!!!!
- ECONOMICE HARD QUESTION
- 作文—20點
此文章來自奇摩知識+如有不便請留言告知
mathematics!!
發問:
With probability of 1/6 there are i defective fuses among 1000 fuses (i=0,1,2,3,4,5). If among 100 fuses selected at random, none was defective, what is the probability of no defective fuses at all?
最佳解答:
First of all, before approaching the centre of this question, we have to consider the events "What is the probability of getting 100 non-defective fuse from 1000 fuses in which n is/are defective" (where n = 0,1,2,3,4,5) and their corresponding probabilities Pn. So for P0, it is surely that all 100 selected fuses are non-defective since all are non-defective, hence P0 = 1. For P1, we can think as, out of 1000 fuses, there are a total of 1000C100 possibilities in selecting 100 fuses and, in which there are al total of 999C100 possibilities of selecting 100 non-defective fuses (since 999 are non-defective in this case). Therefore, P1 = 999C100 /1000C100. And the rest can be obtained through such analysis. Summarizing, we have the following probabilities: 圖片參考:http://i117.photobucket.com/albums/o61/billy_hywung/Maths/Bayes.jpg Now, let's back to the centre of the question: Since the fact that "100 fuses are non-defective" has been confirmed, so the possibility to be considered must be one of the 6 mentioned above and hence, by Baye's theorem, the probability that all 1000 fuses are non-defective is: 圖片參考:http://i117.photobucket.com/albums/o61/billy_hywung/Maths/Bayes1.jpg which gives a numerical value of 0.213 (correct to 3 d.p.).
其他解答:
因為none was defective,所以 of no defective fuses係100%7638E7481407D16B
留言列表