close
標題:
maths problem
發問:
最佳解答:
√(k+3)2+25 = √(8-k)2 Case 1 : k + 3 >= 0 and 8 - k >= 0 : k+3 + 25 = 8-k k = - 10 , but - 10 + 3 = - 7 < 0 , rejected. Case 2 : k + 3 >= 0 and 8 - k <= 0 : k+3 + 25 = k-8 k have no solution. Case 3 : k + 3 <= 0 and 8 - k >= 0 : - k - 3 + 25 = 8 - k k have no solution. Case 4 : k + 3 <= 0 and 8 - k <= 0 : - k - 3 + 25 = k - 8 k = 15 , But 15 + 3 > 0 , rejected. The equation have no solution. 2010-04-24 14:54:31 補充: 001 answer is wrong , √(k+3)2+25 = √(8-k)2 √(-10+3)2+25 = √(8-(-10))2 √49 + 25 = √324 7 + 25 = 18 is wrong.
其他解答:
√(k+3)2+25 = √(8-k)2 (k+3)+25 = 8-k k+28 = 8-k 2k = -20 k = -107638E7481407D16B
maths problem
發問:
- 精子會唔會用哂
- ManDarina Duck係咩野黎-賣乜-20點!!!!!!!!!!!!!!!!!!急
- 找Daniel Cudmore圖片
- 遮紋身的方法
- 請問邊度有Fila 專門店-
- 20點,,,,PHITEN既頸帶RAKUWA NECK X30
- 有無人知302號專線小巴去馬灣bbq場呀-
- 方程題!!請幫忙!
- iPod的資料
- 新城國語力頒獎禮2007 --S.H.E
此文章來自奇摩知識+如有不便請留言告知
How to solve √(k+3)2+25 = √(8-k)2 Thanks!!最佳解答:
√(k+3)2+25 = √(8-k)2 Case 1 : k + 3 >= 0 and 8 - k >= 0 : k+3 + 25 = 8-k k = - 10 , but - 10 + 3 = - 7 < 0 , rejected. Case 2 : k + 3 >= 0 and 8 - k <= 0 : k+3 + 25 = k-8 k have no solution. Case 3 : k + 3 <= 0 and 8 - k >= 0 : - k - 3 + 25 = 8 - k k have no solution. Case 4 : k + 3 <= 0 and 8 - k <= 0 : - k - 3 + 25 = k - 8 k = 15 , But 15 + 3 > 0 , rejected. The equation have no solution. 2010-04-24 14:54:31 補充: 001 answer is wrong , √(k+3)2+25 = √(8-k)2 √(-10+3)2+25 = √(8-(-10))2 √49 + 25 = √324 7 + 25 = 18 is wrong.
其他解答:
√(k+3)2+25 = √(8-k)2 (k+3)+25 = 8-k k+28 = 8-k 2k = -20 k = -107638E7481407D16B
文章標籤
全站熱搜
留言列表